
0.1. ALGEBRA 3

0.1 Algebra

A1 Let a, b, c be positive real numbers such that abc = 1. Prove that:

(a5+a4+a3+a2+a+1)(b5+b4+b3+b2+b+1)(c5+c4+c3+c2+c+1) ≥ 8(a2+a+1)(b2+b+1)(c2+c+1).

Solution
We have x5 + x4 + x3 + x2 + x+ 1 = (x3 + 1)(x2 + x+ 1) for all x ∈ R+.
Take S = (a2 + a+ 1)(b2 + b+ 1)(c2 + c+ 1).
The inequality becomes S(a3 + 1)(b3 + 1)(c3 + 1) ≥ 8S.
It remains to prove that (a3 + 1)(b3 + 1)(c3 + 1) ≥ 8.
By AM −GM we have x3 + 1 ≥ 2

√
x3 for all x ∈ R+.

So (a3 + 1)(b3 + 1)(c3 + 1) ≥ 23 ·
√
a3b3c3 = 8 and we are done.

Equality holds when a = b = c = 1.

A2 Let x, y, z be positive real numbers. Prove that:

x+ 2y

z + 2x+ 3y
+

y + 2z

x+ 2y + 3z
+

z + 2x

y + 2z + 3x
≤ 3

2
.

Solution 1

Notice that
∑
cyc

x+ 2y

z + 2x+ 3y
=
∑
cyc

(
1− x+ y + z

z + 2x+ 3y

)
= 3− (x+ y+ z)

∑
cyc

1

z + 2x+ 3y
.

We have to proof that 3−(x+y+z)
∑
cyc

1

z + 2x+ 3y
≤ 3

2
or

3

2(x+ y + z)
≤
∑
cyc

1

z + 2x+ 3y
.

By Cauchy-Schwarz we obtain
∑
cyc

1

z + 2x+ 3y
≥ (1 + 1 + 1)2∑

cyc

(z + 2x+ 3y)
=

3

2(x+ y + z)
.

Solution 2
Because the inequality is homogenous, we can take x+ y + z = 1.
Denote x+ 2y = a, y + 2z = b, z + 2x = c. Hence, a+ b+ c = 3(x+ y + z) = 3.

We have (k − 1)2 ≥ 0⇔ (k + 1)2 ≥ 4k ⇔ k + 1

4
≥ k

k + 1
for all k > 0.

Hence
∑
cyc

x+ 2y

z + 2x+ 3y
=
∑ a

1 + a
≤
∑ a+ 1

4
=

a+ b+ c+ 3

4
=

3

2
.

A3 Let a, b be positive real numbers. Prove that

√
a2 + ab+ b2

3
+
√
ab ≤ a+ b.

Solution 1

Applying x + y ≤
√

2(x2 + y2) for x =

√
a2 + ab+ b2

3
and y =

√
ab, we will obtain√

a2 + ab+ b2

3
+
√
ab ≤

√
2a2 + 2ab+ 2b2 + 6ab

3
≤
√

3(a2 + b2 + 2ab)

3
= a+ b.
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Solution 2
The inequality is equivalent to
a2 + ab+ b2

3
+

3ab

3
+ 2

√
ab(a2 + ab+ b2)

3
≤ 3a2 + 6ab+ 3b2

3
. This can be rewritten as

2

√
ab(a2 + ab+ b2)

3
≤ 2(a2 + ab+ b2)

3
or
√
ab ≤

√
a2 + ab+ b2

3
which is obviously true

since a2 + b2 + ab ≥ 2ab+ ab = 3ab.

A4 Let x, y be positive real numbers such that x3 + y3 ≤ x2 + y2. Find the greatest
possible value of the product xy.
Solution 1
We have (x + y)(x2 + y2) ≥ (x + y)(x3 + y3) ≥ (x2 + y2)2, hence x + y ≥ x2 + y2. Now
2(x + y) ≥ (1 + 1)(x2 + y2) ≥ (x + y)2, thus 2 ≥ x + y. Because x + y ≥ 2

√
xy, we will

obtain 1 ≥ xy. Equality holds when x = y = 1.
So the greatest possible value of the product xy is 1.
Solution 2
By AM −GM we have x3+ y3 ≥ √xy · (x2+ y2), hence 1 ≥ √xy since x2+ y2 ≥ x3+ y3.
Equality holds when x = y = 1. So the greatest possible value of the product xy is 1.

A5 Determine the positive integers a, b such that a2b2 + 208 = 4{lcm[a; b] + gcd(a; b)}2.
Solution
Let d = gcd(a, b) and x, y ∈ Z+ such that a = dx, b = dy. Obviously, (x, y) = 1. The
equation is equivalent to d4x2y2 + 208 = 4d2(xy + 1)2. Hence d2 | 208 or d2 | 13 · 42, so
d ∈ {1, 2, 4}. Take t = xy with t ∈ Z+.
Case I. If d = 1, then (xy)2 + 208 = 4(xy + 1)2 or 3t2 + 8t− 204 = 0, without solutions.
Case II. If d = 2, then 16x2y2 + 208 = 16(xy + 1)2 or t2 + 13 = t2 + 2t + 1 ⇒ t = 6, so
(x, y) ∈ {(1, 6); (2, 3); (3, 2); (6, 1)} ⇒ (a, b) ∈ {(2, 12); (4, 6); (6, 4); (12; 2)}.
Case III. If d = 4, then 162x2y2+208 = 4 · 16(xy+1)2 or 16t2+13 = 4(t+1)2 and if t ∈ Z,
then 13 must be even, contradiction!
Finally, the solutions are (a, b) ∈ {(2, 12); (4, 6); (6, 4); (12; 2)}.

A6 Let xi > 1, for all i ∈ {1, 2, 3, ..., 2011}. Prove the inequality
2011∑
i=1

x2
i

xi+1 − 1
≥ 8044

where x2012 = x1. When does equality hold?
Solution 1
Realize that (xi − 2)2 ≥ 0⇔ x2

i ≥ 4(xi − 1). So we get:
x2
1

x2 − 1
+

x2
2

x3 − 1
+ ...+

x2
2011

x1 − 1
≥ 4

(
x1 − 1

x2 − 1
+

x2 − 1

x3 − 1
+ ...+

x2011 − 1

x1 − 1

)
. By AM −GM :
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x1 − 1

x2 − 1
+

x2 − 1

x3 − 1
+ ...+

x2011 − 1

x1 − 1
≥ 2011 · 2011

√
x1 − 1

x2 − 1
· x2 − 1

x3 − 1
· ... · x2011 − 1

x1 − 1
= 2011.

Finally, we obtain that
x2
1

x2 − 1
+

x2
2

x3 − 1
+ ...+

x2
2011

x1 − 1
≥ 8044.

Equality holds when (xi − 2)2 = 0, (∀) i = 1, 2011, or x1 = x2 = ... = x2011 = 2.
Solution 2
All the denominators are greater than 0, so by Cauchy − Schwarz we have:
x2
1

x2 − 1
+

x2
2

x3 − 1
+ ... +

x2
2011

x1 − 1
≥ (x1 + x2 + ...+ x2011)

2

x1 + x2 + ...+ x2011 − 2011
. It remains to prove that

(x1 + x2 + ...+ x2011)
2

x1 + x2 + ...+ x2011 − 2011
≥ 8044 or

(
2011∑
i=1

xi

)2

+ 4 · 20112 ≥ 4 · 2011 ·
2011∑
i=1

xi which is

obviously true by AM −GM for

(
2011∑
i=1

xi

)2

and 4 · 20112.

Equality holds when x1 + x2 + ...+ x2011 = 4022 and
x1

x2 − 1
=

x2

x3 − 1
= ... =

x2011

x1 − 1
or

x2
i − xi = xi−1xi+1 − xi−1, (∀) i = 1, 2011 ⇒

2011∑
i=1

x2
i =

2011∑
i=1

xixi+2 where x2012 = x1 and

x2013 = x2. This means that x1 = x2 = ... = x2011.
So equality holds when x1 = x2 = ... = x2011 = 2 since x1 + x2 + ...+ x2011 = 4022.

A7 Let a, b, c be positive real numbers with abc = 1. Prove the inequality:

2a2 + 1
a

b+ 1
a
+ 1

+
2b2 + 1

b

c+
1

b
+ 1

+
2c2 + 1

c

a+ 1
c
+ 1
≥ 3

.
Solution 1

By AM −GM we have 2x2 +
1

x
= x2 + x2 +

1

x
≥ 3

3

√
x4

x
= 3x for all x > 0, so we have:∑

cyc

2a2 + 1
a

b+ 1
a
+ 1
≥
∑
cyc

3a

1 + b+ bc
= 3

(∑
cyc

a2

1 + a+ ab

)
≥ 3(a+ b+ c)2

3 + a+ b+ c+ ab+ bc+ ca
.

By AM−GM we have ab+bc+ca ≥ 3 and a+b+c ≥ 3. But 3(a2+b2+c2) ≥ (a+b+c)2 ≥
3(a+ b+ c). So (a+ b+ c)2 = a2 + b2 + c2 +2ab+2bc+2ca ≥ 3+ a+ b+ c+ ab+ bc+ ca.

Hence
∑
cyc

2a2 + 1
a

b+ 1
a
+ 1
≥ 3(a+ b+ c)2

3 + a+ b+ c+ ab+ bc+ ca
≥ 3(a+ b+ c)2

(a+ b+ c)2
= 3.

Solution 2

Denote a =
y

x
, b =

z

y
and c =

x

z
. We have

2a2 + 1
a

b+ 1
a
+ 1

=

2y2

x2 + x
y

z
y
+ x

y
+ 1

=
2y3 + x3

x2(x+ y + z)
.
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Hence
∑
cyc

2a2 + 1
a

b+ 1
a
+ 1

=
1

x+ y + z
·
∑
cyc

2y3 + x3

x2
=

1

x+ y + z
·

(
x+ y + z + 2

∑
cyc

y3

x2

)
.

By Rearrangements Inequality we get
∑
cyc

y3

x2
≥ x+ y + z.

So
∑
cyc

2a2 + 1
a

b+ 1
a
+ 1
≥ 1

x+ y + z
· (3x+ 3y + 3z) = 3.

A8 Decipher the equality (LARN−ACA) : (CY P +RUS) = CY P ·RUS where different
symbols correspond to different digits and equal symbols correspond to equal digits.
It is also supposed that all these digits are different from 0.
Solution
Denote x = LARN − ACA, y = CY P + RUS and z = CY P · RUS . It is obvious that
1823 − 898 ≤ x ≤ 9187 − 121, 135 + 246 ≤ y ≤ 975 + 864, that is 925 ≤ x ≤ 9075 and
381 ≤ y ≤ 1839, whence it follows that 925

1839
≤ x

y
≤ 9075

381
, or 0, 502... ≤ x

y
≤ 23, 81... Since

x

y
= z is an integer, it follows that 1 ≤ x

y
≤ 23, hence 1 ≤ CY P · RUS ≤ 23. So both

values CY P and RUS are ≤ 23. From this and the fact that 223 > 23 it follows that at
least one of the symbols in the expression CY P and at least one of the symbols in the
expression RUS correspond to the digit 1. This is impossible because of the assumption
that all the symbols in the set {C, Y, P,R, U, S} correspond to different digits.

A9 Let x1, x2, ..., xn be real numbers satisfying
n−1∑
k=1

min(xk;xk+1) = min(x1, xn).

Prove that
n−1∑
k=2

xk ≥ 0.

Solution 1
Case I. If min(x1, xn) = x1, we know that xk ≥ min(xk;xk+1) for all k ∈ {1, 2, 3, ..., n− 1}.

So x1 + x2 + ...+ xn−1 ≥
n−1∑
k=1

min(xk;xk+1) = min(x1, xn) = x1, hence
n−1∑
k=2

xk ≥ 0.

Case II. If min(x1, xn) = xn, we know that xk ≥ min(xk−1;xk) for all k ∈ {2, 3, 4, ..., n}.

So x2 + x3 + ...+ xn ≥
n−1∑
k=1

min(xk;xk+1) = min(x1, xn) = xn, hence
n−1∑
k=2

xk ≥ 0.

Solution 2
Since min(a, b) =

1

2
(a+ b− |a− b|), after substitutions, we will have:

.
n−1∑
k=1

1

2
(xk + xk+1 − |xk − xk+1|) =

1

2
(x1 + xn − |x1 − xn|)⇔ ...

2(x2 + x3 + ...+ xn−1) + |x1 − xn| = |x1 − x2|+ |x2 − x3|+ ...+ |xn−1 − xn|.
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As |x1−x2|+ |x2−x3|+ ...+ |xn−1−xn| ≥ |x1−x2+x2−x3+ ...+xn−1−xn| = |x1−xn|,
we obtain the desired result.


