0.1. ALGEBRA

0.1 Algebra

A1 Let a, b, c be positive real numbers such that abc = 1. Prove that:

 $(a^5 + a^4 + a^3 + a^2 + a + 1)(b^5 + b^4 + b^3 + b^2 + b + 1)(c^5 + c^4 + c^3 + c^2 + c + 1) \ge 8(a^2 + a + 1)(b^2 + b + 1)(c^2 + c + 1).$

Solution

We have $x^5 + x^4 + x^3 + x^2 + x + 1 = (x^3 + 1)(x^2 + x + 1)$ for all $x \in \mathbb{R}_+$. Take $S = (a^2 + a + 1)(b^2 + b + 1)(c^2 + c + 1)$. The inequality becomes $S(a^3 + 1)(b^3 + 1)(c^3 + 1) \ge 8S$. It remains to prove that $(a^3 + 1)(b^3 + 1)(c^3 + 1) \ge 8$. By AM - GM we have $x^3 + 1 \ge 2\sqrt{x^3}$ for all $x \in \mathbb{R}_+$. So $(a^3 + 1)(b^3 + 1)(c^3 + 1) \ge 2^3 \cdot \sqrt{a^3b^3c^3} = 8$ and we are done. Equality holds when a = b = c = 1.

A2 Let x, y, z be positive real numbers. Prove that:

$$\frac{x+2y}{z+2x+3y} + \frac{y+2z}{x+2y+3z} + \frac{z+2x}{y+2z+3x} \le \frac{3}{2}.$$

Solution 1

Notice that
$$\sum_{cyc} \frac{x+2y}{z+2x+3y} = \sum_{cyc} \left(1 - \frac{x+y+z}{z+2x+3y} \right) = 3 - (x+y+z) \sum_{cyc} \frac{1}{z+2x+3y}.$$

We have to proof that $3 - (x+y+z) \sum_{cyc} \frac{1}{z+2x+3y} \le \frac{3}{2}$ or $\frac{3}{2(x+y+z)} \le \sum_{cyc} \frac{1}{z+2x+3y}.$
By *Cauchy-Schwarz* we obtain $\sum_{cyc} \frac{1}{z+2x+3y} \ge \frac{(1+1+1)^2}{\sum_{cyc} (z+2x+3y)} = \frac{3}{2(x+y+z)}.$

Solution 2

Because the inequality is homogenous, we can take x + y + z = 1. Denote x + 2y = a, y + 2z = b, z + 2x = c. Hence, a + b + c = 3(x + y + z) = 3. We have $(k - 1)^2 \ge 0 \Leftrightarrow (k + 1)^2 \ge 4k \Leftrightarrow \frac{k + 1}{4} \ge \frac{k}{k + 1}$ for all k > 0. Hence $\sum_{cyc} \frac{x + 2y}{z + 2x + 3y} = \sum \frac{a}{1 + a} \le \sum \frac{a + 1}{4} = \frac{a + b + c + 3}{4} = \frac{3}{2}$.

A3 Let a, b be positive real numbers. Prove that $\sqrt{\frac{a^2 + ab + b^2}{3}} + \sqrt{ab} \le a + b$. Solution 1

Applying $x + y \le \sqrt{2(x^2 + y^2)}$ for $x = \sqrt{\frac{a^2 + ab + b^2}{3}}$ and $y = \sqrt{ab}$, we will obtain $\sqrt{\frac{a^2 + ab + b^2}{3}} + \sqrt{ab} \le \sqrt{\frac{2a^2 + 2ab + 2b^2 + 6ab}{3}} \le \sqrt{\frac{3(a^2 + b^2 + 2ab)}{3}} = a + b.$

Solution 2

The inequality is equivalent to

 $\frac{a^2 + ab + b^2}{3} + \frac{3ab}{3} + 2\sqrt{\frac{ab(a^2 + ab + b^2)}{3}} \le \frac{3a^2 + 6ab + 3b^2}{3}.$ This can be rewritten as $2\sqrt{\frac{ab(a^2 + ab + b^2)}{3}} \le \frac{2(a^2 + ab + b^2)}{3} \text{ or } \sqrt{ab} \le \sqrt{\frac{a^2 + ab + b^2}{3}} \text{ which is obviously true}$ since $a^2 + b^2 + ab \ge 2ab + ab = 3ab$.

A4 Let x, y be positive real numbers such that $x^3 + y^3 \le x^2 + y^2$. Find the greatest possible value of the product xy.

Solution 1

We have $(x + y)(x^2 + y^2) \ge (x + y)(x^3 + y^3) \ge (x^2 + y^2)^2$, hence $x + y \ge x^2 + y^2$. Now $2(x + y) \ge (1 + 1)(x^2 + y^2) \ge (x + y)^2$, thus $2 \ge x + y$. Because $x + y \ge 2\sqrt{xy}$, we will obtain $1 \ge xy$. Equality holds when x = y = 1.

So the greatest possible value of the product xy is 1.

Solution 2

By AM - GM we have $x^3 + y^3 \ge \sqrt{xy} \cdot (x^2 + y^2)$, hence $1 \ge \sqrt{xy}$ since $x^2 + y^2 \ge x^3 + y^3$. Equality holds when x = y = 1. So the greatest possible value of the product xy is 1.

A5 Determine the positive integers a, b such that $a^2b^2 + 208 = 4\{lcm[a; b] + gcd(a; b)\}^2$. Solution

Let d = gcd(a, b) and $x, y \in \mathbb{Z}_+$ such that a = dx, b = dy. Obviously, (x, y) = 1. The equation is equivalent to $d^4x^2y^2 + 208 = 4d^2(xy+1)^2$. Hence $d^2 \mid 208$ or $d^2 \mid 13 \cdot 4^2$, so $d \in \{1, 2, 4\}$. Take t = xy with $t \in \mathbb{Z}_+$.

Case I. If d = 1, then $(xy)^2 + 208 = 4(xy+1)^2$ or $3t^2 + 8t - 204 = 0$, without solutions. *Case II.* If d = 2, then $16x^2y^2 + 208 = 16(xy+1)^2$ or $t^2 + 13 = t^2 + 2t + 1 \Rightarrow t = 6$, so $(x, y) \in \{(1, 6); (2, 3); (3, 2); (6, 1)\} \Rightarrow (a, b) \in \{(2, 12); (4, 6); (6, 4); (12; 2)\}.$

Case III. If d = 4, then $16^2x^2y^2 + 208 = 4 \cdot 16(xy+1)^2$ or $16t^2 + 13 = 4(t+1)^2$ and if $t \in \mathbb{Z}$, then 13 must be even, contradiction!

Finally, the solutions are $(a, b) \in \{(2, 12); (4, 6); (6, 4); (12; 2)\}.$

A6 Let $x_i > 1$, for all $i \in \{1, 2, 3, ..., 2011\}$. Prove the inequality $\sum_{i=1}^{2011} \frac{x_i^2}{x_{i+1} - 1} \ge 8044$ where $x_{2012} = x_1$. When does equality hold?

Solution 1

Realize that $(x_i - 2)^2 \ge 0 \Leftrightarrow x_i^2 \ge 4(x_i - 1)$. So we get: $\frac{x_1^2}{x_2 - 1} + \frac{x_2^2}{x_3 - 1} + \dots + \frac{x_{2011}^2}{x_1 - 1} \ge 4\left(\frac{x_1 - 1}{x_2 - 1} + \frac{x_2 - 1}{x_3 - 1} + \dots + \frac{x_{2011} - 1}{x_1 - 1}\right)$. By AM - GM:

0.1. ALGEBRA

$$\begin{split} \frac{x_1 - 1}{x_2 - 1} + \frac{x_2 - 1}{x_3 - 1} + \ldots + \frac{x_{2011} - 1}{x_1 - 1} &\geq 2011 \cdot \sqrt[2011]{\frac{x_1 - 1}{x_2 - 1}} \cdot \frac{x_2 - 1}{x_3 - 1} \cdot \ldots \cdot \frac{x_{2011} - 1}{x_1 - 1} &= 2011. \end{split}$$

Finally, we obtain that $\frac{x_1^2}{x_2 - 1} + \frac{x_2^2}{x_3 - 1} + \ldots + \frac{x_{2011}^2}{x_1 - 1} &\geq 8044. \end{cases}$
Equality holds when $(x_i - 2)^2 = 0$, $(\forall) \ i = \overline{1, 2011}$, or $x_1 = x_2 = \ldots = x_{2011} = 2.$
Solution 2
All the denominators are greater than 0, so by $Cauchy - Schwarz$ we have:
 $\frac{x_1^2}{x_2 - 1} + \frac{x_2^2}{x_3 - 1} + \ldots + \frac{x_{2011}^2}{x_1 - 1} &\geq \frac{(x_1 + x_2 + \ldots + x_{2011})^2}{x_1 + x_2 + \ldots + x_{2011} - 2011}.$ It remains to prove that
 $\frac{(x_1 + x_2 + \ldots + x_{2011})^2}{x_1 + x_2 + \ldots + x_{2011} - 2011} &\geq 8044 \text{ or } \left(\sum_{i=1}^{2011} x_i\right)^2 + 4 \cdot 2011^2 &\geq 4 \cdot 2011 \cdot \sum_{i=1}^{2011} x_i \text{ which is}$
obviously true by $AM - GM$ for $\left(\sum_{i=1}^{2011} x_i\right)^2$ and $4 \cdot 2011^2.$
Equality holds when $x_1 + x_2 + \ldots + x_{2011} = 4022$ and $\frac{x_1}{x_2 - 1} = \frac{x_2}{x_3 - 1} = \ldots = \frac{x_{2011}}{x_1 - 1}$ or
 $x_i^2 - x_i = x_{i-1}x_{i+1} - x_{i-1}, \quad (\forall) \ i = \overline{1,2011} \Rightarrow \sum_{i=1}^{2011} x_i^2 = \sum_{i=1}^{2011} x_i x_{i+2}$ where $x_{2012} = x_1$ and
 $x_{2013} = x_2$. This means that $x_1 = x_2 = \ldots = x_{2011}$.

A7 Let a, b, c be positive real numbers with abc = 1. Prove the inequality:

$$\frac{2a^2 + \frac{1}{a}}{b + \frac{1}{a} + 1} + \frac{2b^2 + \frac{1}{b}}{c + \frac{1}{b} + 1} + \frac{2c^2 + \frac{1}{c}}{a + \frac{1}{c} + 1} \ge 3$$

Solution 1

By
$$AM - GM$$
 we have $2x^2 + \frac{1}{x} = x^2 + x^2 + \frac{1}{x} \ge 3\sqrt[3]{\frac{x^4}{x}} = 3x$ for all $x > 0$, so we have:

$$\sum_{cyc} \frac{2a^2 + \frac{1}{a}}{b + \frac{1}{a} + 1} \ge \sum_{cyc} \frac{3a}{1 + b + bc} = 3\left(\sum_{cyc} \frac{a^2}{1 + a + ab}\right) \ge \frac{3(a + b + c)^2}{3 + a + b + c + ab + bc + ca}.$$
By $AM - GM$ we have $ab + bc + ca \ge 3$ and $a + b + c \ge 3$. But $3(a^2 + b^2 + c^2) \ge (a + b + c)^2 \ge 3(a + b + c)$. So $(a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca \ge 3 + a + b + c + ab + bc + ca$.
Hence $\sum_{cyc} \frac{2a^2 + \frac{1}{a}}{b + \frac{1}{a} + 1} \ge \frac{3(a + b + c)^2}{3 + a + b + c + ab + bc + ca} \ge \frac{3(a + b + c)^2}{(a + b + c)^2} = 3.$
Solution 2

Denote $a = \frac{y}{x}$, $b = \frac{z}{y}$ and $c = \frac{x}{z}$. We have $\frac{2a^2 + \frac{1}{a}}{b + \frac{1}{a} + 1} = \frac{\frac{2y^2}{x^2} + \frac{x}{y}}{\frac{z}{y} + \frac{x}{y} + 1} = \frac{2y^3 + x^3}{x^2(x + y + z)}$.

Hence
$$\sum_{cyc} \frac{2a^2 + \frac{1}{a}}{b + \frac{1}{a} + 1} = \frac{1}{x + y + z} \cdot \sum_{cyc} \frac{2y^3 + x^3}{x^2} = \frac{1}{x + y + z} \cdot \left(x + y + z + 2\sum_{cyc} \frac{y^3}{x^2}\right)$$

By Rearrangements Inequality we get $\sum_{cuc} \frac{y}{x^2} \ge x + y + z$.

So
$$\sum_{cyc} \frac{2a^2 + \frac{1}{a}}{b + \frac{1}{a} + 1} \ge \frac{1}{x + y + z} \cdot (3x + 3y + 3z) = 3$$

A8 Decipher the equality $(\overline{LARN} - \overline{ACA}) : (\overline{CYP} + \overline{RUS}) = C^{Y^P} \cdot R^{U^S}$ where different symbols correspond to different digits and equal symbols correspond to equal digits. It is also supposed that all these digits are different from 0.

Solution

Denote $x = \overline{LARN} - \overline{ACA}$, $y = \overline{CYP} + \overline{RUS}$ and $z = C^{Y^P} \cdot R^{U^S}$. It is obvious that $1823 - 898 \le x \le 9187 - 121, 135 + 246 \le y \le 975 + 864$, that is $925 \le x \le 9075$ and $381 \le y \le 1839$, whence it follows that $\frac{925}{1839} \le \frac{x}{y} \le \frac{9075}{381}$, or $0, 502... \le \frac{x}{y} \le 23, 81...$ Since $\frac{x}{y} = z$ is an integer, it follows that $1 \le \frac{x}{y} \le 23$, hence $1 \le C^{Y^P} \cdot R^{U^S} \le 23$. So both values C^{Y^P} and R^{U^S} are ≤ 23 . From this and the fact that $2^{2^3} > 23$ it follows that at least one of the symbols in the expression $C^{Y^{P}}$ and at least one of the symbols in the expression \mathbb{R}^{U^S} correspond to the digit 1. This is impossible because of the assumption that all the symbols in the set $\{C, Y, P, R, U, S\}$ correspond to different digits.

A9 Let
$$x_1, x_2, ..., x_n$$
 be real numbers satisfying $\sum_{k=1}^{n-1} \min(x_k; x_{k+1}) = \min(x_1, x_n)$.

Prove that $\sum_{k=2} x_k \ge 0$.

Solution 1

Case I. If $\min(x_1, x_n) = x_1$, we know that $x_k \ge \min(x_k; x_{k+1})$ for all $k \in \{1, 2, 3, ..., n-1\}$. So $x_1 + x_2 + \dots + x_{n-1} \ge \sum_{k=1}^{n-1} \min(x_k; x_{k+1}) = \min(x_1, x_n) = x_1$, hence $\sum_{k=0}^{n-1} x_k \ge 0$. Case II. If $\min(x_1, x_n) = x_n$, we know that $x_k \ge \min(x_{k-1}; x_k)$ for all $k \in \{2, 3, 4, ..., n\}$. So $x_2 + x_3 + \dots + x_n \ge \sum_{k=1}^{n-1} \min(x_k; x_{k+1}) = \min(x_1, x_n) = x_n$, hence $\sum_{k=1}^{n-1} x_k \ge 0$.

Solution 2

Since $min(a, b) = \frac{1}{2}(a + b - |a - b|)$, after substitutions, we will have: . $\sum_{k=1}^{n-1} \frac{1}{2} (x_k + x_{k+1} - |x_k - x_{k+1}|) = \frac{1}{2} (x_1 + x_n - |x_1 - x_n|) \Leftrightarrow \dots$ $2(x_2 + x_3 + \dots + x_{n-1}) + |x_1 - x_n| = |x_1 - x_2| + |x_2 - x_3| + \dots + |x_{n-1} - x_n|.$

0.1. ALGEBRA

As $|x_1 - x_2| + |x_2 - x_3| + ... + |x_{n-1} - x_n| \ge |x_1 - x_2 + x_2 - x_3 + ... + x_{n-1} - x_n| = |x_1 - x_n|$, we obtain the desired result.