The fourth TST for JBMO 2013

Bucharest, May 24, 2013

Problem 1. Let A be a point on a semicircle of diameter [$B C$], and X an arbitrary point inside the triangle $A B C$. The line $B X$ intersects the semicircle for the second time in K, and intersects the line segment $(A C)$ in F. The line $C X$ intersects the semicircle for the second time in in L, and intersects the segment line $(A B)$ in E. Prove that the circumcircles of triangles $A K F$ and $A E L$ are tangent.

Ioan-Laurenţiu Ploscaru

Solution: Denote by O the midpoint of the diameter $[B C]$. We prove that the line $A O$ is tangent to both circumcircles. The conclusion follows readily.
As $A O=C O$ (radii), we have that $m(\angle C A O)=m(\angle A C O)=m(\angle A K B)=\frac{1}{2} m(\widehat{A F})$ (in the circumcircle of triangle $A K F)$. It follows that $A O$ is tangent to the circumcircle of triangle $A K F$. Similarly, $A O$ is also tangent to the circumcircle of triangle $A E L$, hence the conclusion.

Problem 2. Let a, b, c be positive real numbers such that $a+b+c=1$. Show that

$$
\frac{1-a^{2}}{a+b c}+\frac{1-b^{2}}{b+c a}+\frac{1-c^{2}}{c+a b} \geq 6
$$

Lucian Petrescu
Solution 1: $\frac{1-a^{2}}{a+b c}+\frac{1-b^{2}}{b+c a}+\frac{1-c^{2}}{c+a b} \geq 6 \Leftrightarrow\left(\frac{1-a^{2}}{a+b c}+1\right)+\left(\frac{1-b^{2}}{b+c a}+1\right)+\left(\frac{1-c^{2}}{c+a b}+1\right) \geq 9 \Leftrightarrow$ $\frac{1-a^{2}+a+b c}{a+b c}+\frac{1-b^{2}+b+b c}{b+c a}+\frac{1-c^{2}+c+a b}{c+a b} \geq 9$.
From $a+b+c=1$, we get $a-a^{2}=a b+a c$ and two similar relations, hence it remains to be proven that

$$
\frac{1+a b+b c+c a}{a+b c}+\frac{1+a b+b c+c a}{b+c a}+\frac{1+a b+b c+c a}{c+a b} \geq 9
$$

i.e.

$$
[(a+b c)+(b+c a)+(c+a b)] \cdot\left(\frac{1}{a+b c}+\frac{1}{b+c a}+\frac{1}{c+a b}\right) \geq 9
$$

which follows immediately .
Equality holds when $a+b c=b+c a=c+a b$, which comes to $a=b=c=\frac{1}{3}$.
Solution 2: (Teodor Andrei Andronache) From $a+b+c=1$, we get $a+b c=a(a+b+c)+b c=$ $(a+b)(a+c)$ and $1-a^{2}=(a+b+c)^{2}-a^{2}=(b+c)(2 a+b+c)$. Denoting $a+b=x, b+c=y$, $c+a=z$, we have $\frac{1-a^{2}}{a+b c}=\frac{y(z+x)}{z x}=\frac{y}{x}+\frac{y}{z}$, and proceeding similarly for the two other fractions on the left hand side reduces the initial inequality to proving that $\frac{x}{y}+\frac{y}{x}+\frac{y}{z}+\frac{z}{y}+\frac{z}{x}+\frac{x}{z} \geq 6$, which is clear.

Problem 3. Let D be the midpoint of the side $[B C]$ of the triangle $A B C$ with $A B \neq A C$ and E the foot of the altitude from $B C$. If P is the intersection point of the perpendicular bisector of the segment line $[D E]$ with the perpendicular from D onto the the angle bisector of $B A C$, prove that P is on the Euler circle of triangle $A B C$.

Marius Bocanu
Solution: We may assume that $A B>A C$, the case when $A B<A C$ being similar.
Let ($A N$ be the angle bisector of angle $B A C$, and M the midpoint of side $A B$. As P is on the perpendicular bisector of segment $D E$, we have $D P=P E$, hence $m(\angle D P E)=180^{\circ}-2 m(\angle E D P)=$ $180^{\circ}-2 m(\angle N A E)=180^{\circ}-2(m(\angle N A C)-m(\angle E A C))=180^{\circ}-m(\angle C)+m(\angle B)$.
On the other hand, $m(\angle D M E)=m(\angle B M E)-m(\angle B M D)=180^{\circ}-2 m(\angle B)-m(\angle A)=$ $m(\angle C)-m(\angle B)=180^{\circ}-m(\angle D P E)$, which means that the quadrilateral $D P E M$ is cyclic. But points D, E, M lie on the Euler circle of triangle $A B C$, hence the conclusion.

Remark: If N is the intersection point between the angle bisector of angle A and the perpendicular bisector of segment $B C$, as shown in the figure below, and J is the intersection point of lines $D P$ and $A B$, then it is easy to prove that the quadrilateral $B J D N$ is cyclic, hence $N J$ is perpendicular to $A B$. It follows that $D P$ is in fact the Simson line corresponding to the point N. If H is the orthocenter of triangle $A B C$, then, according to problem 4 from the second test, the line $D P$ bisects the segment line $H N$. It follows that P is the midpoint of the segment line $H N$ and it is known that this midpoint belongs to the Euler circle of triangle $A B C$.

Problem 4. For any sequence $\left(a_{1}, a_{2}, \ldots, a_{2013}\right)$ of integers, we call a triple (i, j, k) satisfying $1 \leq i<j<k \leq 2013$ to be progressive if $a_{k}-a_{j}=a_{j}-a_{i}=1$. Determine the maximum number of progressive triples that a sequence of 2013 integers could have.

Ioan-Laurentsiu Ploscaru
Solution (by the author):
Consider the following operations one can apply to a sequence ($a_{1}, a_{2}, \ldots, a_{2013}$):
i) If $a_{n+1}<a_{n}, n=\overline{1,2012}$ we swap the two numbers and we get
$\left(a_{1}, a_{2}, \ldots, a_{n-1}, a_{n+1}, a_{n}, a_{n+2}, \ldots, a_{2013}\right)$;
ii) If $a_{n+1}=a_{n}+d+1$, where $n=\overline{1,2012}, d>0$, then we add d to each of the numbers $a_{1}, a_{2}, \ldots, a_{n}$ and we obtain the sequence $\left(a_{1}+d, a_{2}+d, \ldots, a_{n}+d, a_{n+1}, \ldots, a_{2013}\right)$.
Let m be the maximum number of progressive triples a sequence of 2013 integers can have. It is clear that applying the operation i) m cannot decrease, therefore we may assume that the sequence is increasing. Next, applying to this increasing sequence the operation $i i$), again, m cannot decrease. It follows that it is enough to consider only sequences of the following type:
$(\underbrace{a, \ldots, a}_{t_{1}}, \underbrace{a+1, \ldots, a+1}_{t_{2}}, \ldots, \underbrace{a+s-1, \ldots, a+s-1}_{t_{s}})$, where $t_{1}, t_{2}, \ldots, t_{s}$ are the number of occur-
rences of the different numbers, and $s \geq 3$.
But for such a sequence we have $m=t_{1} t_{2} t_{3}+t_{2} t_{3} t_{4}+\ldots+t_{s-2} t_{s-1} t_{s}$, where $s \geq 3$ and $t_{1}, t_{2}, \ldots, t_{s}$ are positive integers having the sum 2013.
The maximum value of m is obtained for $s=3$ or $s=4$. Indeed, if $s \geq 5$, then replacing $t_{1}, t_{2}, \ldots, t_{s}$ with $t_{2}, t_{3},\left(t_{1}+t_{4}\right), \ldots, t_{s}$ we get a larger value of m.
For $s=3$ we have $m=t_{1} t_{2} t_{3} \leq\left(t_{1}+t_{2}+t_{3}\right)^{3} / 27=671^{3}$, therefore, in this case, the maximum value of m is 671^{3} and it is obtained when $t_{1}=t_{2}=t_{3}=671$.
For $s=4$ we have $m=\left(t_{1}+t_{4}\right) t_{2} t_{3} \leq\left(t_{1}+t_{2}+t_{3}+t_{4}\right)^{3} / 27=671^{3}$, therefore, in this case, the maximum value of m is 671^{3} and it is obtained when $t_{1}+t_{4}=t_{2}=t_{3}=671$.
We conclude that $m=671^{3}$.

Remark: (Vladimir Vîntu) In order to establish the maximum of $m=t_{1} t_{2} t_{3}+t_{2} t_{3} t_{4}+\ldots+$ $t_{s-2} t_{s-1} t_{s}$, where $s \geq 3$ and $t_{1}, t_{2}, \ldots, t_{s}$ are non-negative integers having the sum 2013, one can notice that, according to the AM-GM inequality,

$$
\begin{aligned}
m \leq\left(t_{1}+t_{4}+\ldots\right)\left(t_{2}+t_{5}+\ldots\right)\left(t_{3}+t_{6}+\ldots\right) \leq & \left(\frac{\left(t_{1}+t_{4}+\ldots\right)+\left(t_{2}+t_{5}+\ldots\right)+\left(t_{3}+t_{6}+\ldots\right)}{3}\right)^{3} \\
& =671^{3}
\end{aligned}
$$

As equality holds for example if $s=3$ and $t_{1}=t_{2}=t_{3}=671$, the maximum value of m is indeed 671^{3}. One can readily find a complete description of the equality cases by examining when equality holds in both the estimations above.

