The second TST for JBMO 2013

Bucharest, April 25, 2013

Problem 1. If $a, b, c>0$ satisfy $a+b+c=3$, then prove that

$$
\frac{a^{2}(b+1)}{a b+a+b}+\frac{b^{2}(c+1)}{b c+b+c}+\frac{c^{2}(a+1)}{c a+c+a} \geq 2
$$

Mathematical Excalibur P322/Vol.14, no.2
Solution 1. We notice that

$$
\frac{a^{2}(b+1)}{a b+a+b}=a-\frac{a b}{a b+a+b} \geq a-\frac{a b}{a b+2 \sqrt{a b}}=a-1+\frac{2}{\sqrt{a b}+2}
$$

Writing two similar inequalities and adding them up, we obtain

$$
\sum_{c y c} \frac{a^{2}(b+1)}{a b+a+b} \geq 2 \sum_{c y c} \frac{1}{\sqrt{a b}+2} \geq 2 \cdot \frac{(1+1+1)^{2}}{6+\sqrt{a b}+\sqrt{a c}+\sqrt{b c}} \geq \frac{18}{6+\frac{a+b}{2}+\frac{a+c}{2}+\frac{b+c}{2}}=2
$$

Equality holds when $a=b=c=1$.
Solution 2. We have, successively

$$
\begin{aligned}
\sum_{c y c} \frac{a^{2}(b+1)}{a b+a+b} & =\sum_{c y c} \frac{a^{2}}{\frac{a b+a+b}{b+1}}=\sum_{c y c} \frac{a^{2}}{a+1-\frac{1}{b+1}} \geq \frac{(a+b+c)^{2}}{a+b+c+3-\left(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\right)}= \\
& =\frac{9}{6-\left(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\right)} \geq \frac{9}{6-\frac{(1+1+1)^{2}}{a+1+b+1+c+1}}=\frac{9}{6-\frac{3}{2}}=2
\end{aligned}
$$

Equality holds when $a=b=c=1$.
Solution 3: (Mathematical Excalibur) We notice that $\frac{a^{2}(b+1)}{a b+a+b}=a-\frac{a b}{a b+a+b}$. Applying the AM-GM inequality twice, we obtain $\frac{a b}{a b+a+b} \leq \frac{a b}{3 \sqrt[3]{a^{2} b^{2}}}=\frac{\sqrt[3]{a b}}{3} \leq \frac{a+b+1}{9}$.

Writing the two similar inequalities and adding them up, yields the desired inequality. Equality holds when $a=b=c=1$.

Problem 2. Call the number $\overline{a_{1} a_{2} \ldots a_{m}}\left(a_{1} \neq 0, a_{m} \neq 0\right)$ the reverese of the number $\overline{a_{m} \ldots a_{2} a_{1}}$.
Prove that the sum between a number n and its reverse is a multiple of 81 if and only if the sum of the digits of n is a multiple of 81 .

Andrei Eckstein

Solution: Consider $n=\overline{a_{1} a_{2} \ldots a_{m-1} a_{m}}$ and $r(n)=\overline{a_{m} a_{m-1} \ldots a_{2} a_{1}}$ its reverse. We have:

$$
n+r(n)=\sum_{j=0}^{m}\left(a_{j}+a_{m-j}\right) \cdot 10^{j}=\sum_{j=0}^{m} a_{j}\left(10^{j}+10^{m-j}\right)
$$

Notice that $10^{i}+10^{j+1} \equiv 10^{j}+10^{i+1}(\bmod 81), \forall i, j \in \mathbb{N}$. It follows that there exists r such that $10^{j}+10^{m-j} \equiv r, \forall j=\overline{0, m}$.
We obtain that $n+r(n) \equiv r \sum_{j=0}^{m} a_{j}$. As $(r, 81)=1$, the conclusion follows immediately.
Problem 3. The three-element subsets of a seven-element set are colored. If the intersection of two sets is empty then they have different colors. What is the minimum number of colors needed?
Solution 1: Let $A=\{1,2,3,4,5,6,7\}$. Two colors are not enough because the sets in the
following sequence of three-element subsets of A should have alternating colors: $\{1,2,3\},\{4,5,6\}$, $\{7,1,2\},\{3,4,5\},\{6,7,1\},\{2,3,4\},\{5,6,7\},\{1,2,3\}$.
With three colors we can color, for example, the three-element subsets of A as follows: we use - the first color for all the subsets containing the element 7;

- a second color for all the subsets that do not contain the element 7 and for which the sum of their elements is even;
- a third color for all the remaining subsets.

Solution 2. (Dan Schwarz) We prove that the minimum number is 3. Assuming that a coloring with two colors was possible, let U be the set of the three-element subsets colored with the first color, and V be the set of the three-element subsets colored with the second color. For every subset $X \in U$ there are 4 subsets of $A \backslash X$ that have to be in V. If we represent the set of the three-element subsets as a graph in which we join two vertices (representing two three-element subsets of A) if they are disjoint, then every element of U is joined with exactly 4 elements of V, and vice-versa. It follows that the total number of edges, i.e. the numbers of pairs of disjoint three-element subsets, is 4 card $U=4$ card V, hence card $U=$ card V. But then card $U \cup V$ should be even, while in fact it is $\binom{7}{3}=35$, which is odd, contradiction.

A coloring with three colors can be found as follows: we choose two arbitrary elements $x, y \in A$. We color the three-element subsets that do not contain neither x nor y with the first color, those that contain x but do not contain y with the second color, and finally the subsets that contain y with the third color.

Problem 4. Let H be the orthocenter of an acute-angled triangle $A B C$ and P a point on the circumcenter of triangle $A B C$. Prove that the Simson line of P bisects the segment $[P H]$.

Solution: We consider P on the arc $\overparen{A C}$ not containing B. The other cases are similar. Let M, N be the projections of P onto $B C$, and $C A$, respectively, and T be the intersection point of ($P N$ with the circumcircle \mathcal{C} of triangle $A B C$. Denote $\{S\}=B H \cap \mathcal{C},\{U\}=M N \cap B H$ and V the midpoint of $[P H] . S$ is the reflection of H across $A C$, hence $N H=N S$.

Notice that lines $B T$ and $M N$ are parallel. Indeed, quadrilaterals $C P N M$ and $C P B T$ being cyclic, it follows that $\angle B M N \equiv \angle C P N \equiv \angle C B T$. Then $B T N U$ is a parallelogram, while $U N P S$ is an isosceles trapezoid (or a rectangle).

It follows that $U P=N S=N H$. Then $H U P N$ is a parallelogram, and the midpoint V of the diagonal $H P$ is also on the other diagonal, i.e. on the Simson line of P.

