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Problem 1. Let a, b, c, d > 0 satisfying abcd = 1. Prove that
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Solution:
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Proceeding similarly with the two other terms of the sum, we obtain the desired inequality.
Equality holds when a = b = c = d = 1.

Problem 2. Weights of 1 g, 2 g, ... , 200 g are placed on the two pans of a balance such that
on each pan there are 100 weights and the balance is in equilibrium. Prove that one can swap
50 weights from one pan with 50 weights from the other pan such that the balance remains in
equilibrium.
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Solution:
We call a pair two weights whose sum is 201g. We wish to obtain, in the end, 50 pairs on each
of the two pans of the balance.
If on the pan on the left we have the weights a1, a2, ... , a50 and their pairs b1, b2, ... , b50 are
on the pan on the right, we move the weights such that, in the end, on the left pan we have the
weights a1, a2, ... , a50 together with their pairs, b1, b2, ... , b50.
If we have less then 50 pairs that are split between the two pans, we must have at least 25 pairs
on the left pan and (at least) 25 pairs on the right pan. Moving 25 complete pairs from the right
pan next to 25 pairs from the left pan, we obtain, again, 50 complete pairs on one pan, hence
the desired result.

Problem 3. Consider a circle centered at O with radius r and a line ` not passing through O.
A grasshopper is jumping to and fro between the points of the circle and the line, the length of
each jump being r. Prove that there are at most 8 points for the grasshopper to reach.
Solution.



We assume that, when having the choice between only two places to jump to, the grasshopper
never jump back to the point from which he got to that place. Let us denote by P1 the starting
point of the grasshopper, with P2 the point on the line on which he has jumped from P1, and so
on. As the length of the jumps are all equal to r, OP1P2P3 is a rhombus (possibly a degenerate
one). Similarly, OP3P4P5 is also a rhombus. It follows that the triangles P1OP5 and P2P3P4 are
congruent (SAS), and from here we obtain that P1P5 is parallel to `. We deduce that P5 is the
reflection of P1 across the perpendicular line from O onto `. (This fact remains true even in the
degenerate cases.) From P5, the grasshopper can get to P9 which, as above, is the reflection of
P5 across the perpendicular line from O onto `, i.e. P1. In conclusion, the grasshopper can reach
only the points Pk, k = 1, 8 (which are not necessarily distinct).

Problem 4. In the acute-angled triangle ABC, with AB 6= AC, D is the foot of the angle bisector
of angle A, and E, F are the feet of the altitudes from B and C, respectively. The circumcircles
of triangles DBF and DCE intersect for the second time at M . Prove that ME = MF .
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Solution.

Triangles AEF and ABC are similar, therefore AF · AB = AE · AC. It follows the point A is
on the radical axis of the two circumcircles, hence M ∈ AD. We have that m(∠EMF ) = 360◦ −
(180◦ −m(∠FBD))− (180◦ −m(∠ECD)) = m(∠B) + m(∠C) = 180◦ −m(∠A); it follows that
the quadrilateral AEMF is cyclic. This means that ∠MEF ≡ ∠FAM and ∠MFE ≡ ∠EAM ,
i.e. triangle MEF is isosceles, with ME = MF.

Problem 5. a) Prove that for every positive integer n, there exist a, b ∈ R \ Z such that the set

An = {a− b, a2 − b2, a3 − b3, . . . , an − bn}

contains only positive integers.
b) Let a and b be two real numbers such that the set

A = {ak − bk| k ∈ N∗}

contains only positive integers. Prove that a and b are integers.

Solution.
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b) If a− b = k1 ∈ N∗ and (a− b)(a + b) = k2 ∈ N∗, then a =
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.

The greatest common divisor of k2 + k21 and 2k1 is the same as that of k2 − k21 and 2k1, hence a
and b are rational numbers which, in their reduced form, have the same denominator.
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r

q
, where (p, q) = 1 and (r, q) = 1. We have:
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There exist n0,m, s with (m, q) = 1, such that, for all n ≥ n0, we have
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.

It follows that q |n for all n > n0, hence q = 1, and a, b ∈ Z.
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